Emergence of synchronous EEG spindles from asynchronous MEG spindles.
نویسندگان
چکیده
Sleep spindles are bursts of rhythmic 10-15 Hz activity, lasting ∼0.5-2 s, that occur during Stage 2 sleep. They are coherent across multiple cortical and thalamic locations in animals, and across scalp EEG sites in humans, suggesting simultaneous generation across the cortical mantle. However, reports of MEG spindles occurring without EEG spindles, and vice versa, are inconsistent with synchronous distributed generation. We objectively determined the frequency of MEG-only, EEG-only, and combined MEG-EEG spindles in high density recordings of natural sleep in humans. About 50% of MEG spindles occur without EEG spindles, but the converse is rare (∼15%). Compared to spindles that occur in MEG only, those that occur in both MEG and EEG have ∼1% more MEG coherence and ∼15% more MEG power, insufficient to account for the ∼55% increase in EEG power. However, these combined spindles involve ∼66% more MEG channels, especially over frontocentral cortex. Furthermore, when both MEG and EEG are involved in a given spindle, the MEG spindle begins ∼150 ms before the EEG spindle and ends ∼250 ms after. Our findings suggest that spindles begin in focal cortical locations which are better recorded with MEG gradiometers than referential EEG due to the biophysics of their propagation. For some spindles, only these regions remain active. For other spindles, these locations may recruit other areas over the next 200 ms, until a critical mass is achieved, including especially frontal cortex, resulting in activation of a diffuse and/or multifocal generator that is best recorded by referential EEG derivations due to their larger leadfields.
منابع مشابه
Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spind...
متن کاملDivergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling
BACKGROUND Sleep spindles are approximately 1-second bursts of 10-15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phase-locked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior M...
متن کاملA time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings
Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging ...
متن کاملPrint this Page for Your Records Close Window Control/Tracking Number: 2013-S-11170-SfN Activity: Scientific Abstract Current Date/Time: 5/9/2013 12:11:04 PM Reproduction of whole-head MEG and EEG patterns during Human Sleep Spindles in a large scale neural model
Abstract: Sleep spindles are prominent thalamocortical bursts of 10-15Hz oscillations lasting ~1s. They have been implicated in memory and disease, and their neurobiology at a circuit, synapse and channel level have been extensively studied in animals. Spindles measured with the electroencephalogram are largely synchronous and distributed, whereas those measured with the magnetoencephalogram ar...
متن کاملTopographical frequency dynamics within EEG and MEG sleep spindles.
OBJECTIVE Spindles are rhythmic bursts of 10-16 Hz activity, lasting ∼1 s, occur during normal stage 2 sleep. Spindles are slower in frontal EEG and possibly MEG. The posterior-fast EEG pattern may predominate early in the spindle, and the anterior-slow pattern late. We aimed to determine the proportion of spindles showing this spatio-spectro-temporal interaction for EEG, and whether it occurs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2011